
In Proceedings of the International Workshop on Development of Intelligent Information Systems,
Niagara-on-the-lake, Ontario, Canada, 1991; University of Toronto Press, (1991) pp. 42-46

Coping with Requirement Freedoms

Martin S. Feather* and Stephen Fickas**

Formal methods for software development employing formal specifications are being used

to good effect in a number of real-world situations. Two key factors that impede the even more
extensive application of these methods are the difficulty of manipulating formal specifications, and
the difficulty of constructing specifications in the first place. Manipulation of formal specifications
has motivated a good deal of research (verification, analysis and program transformation).
Con-struction of formal specifications has, we believe, received less attention. Our focus is on this
latter activity.

We argue that there is in fact a wide gap between the natural statement of requirements and
a formal specification of the same. To understand this gap, we identify “freedoms” that
requirements typically exhibit, but which specifications cannot tolerate (e.g., inconsistency,
incompleteness). We also consider the processes that are applied to construct and use formal
specifications, and compare the freedoms against the processes to determine the capabilities
required of those processes to be successful.

1 Formal specifications and requirements
Formal specifications have been successfully used to help in software development by

clarifying ideas, serving as the basis for developing programs, and providing feedback early in the
development process. For a discussion of the utility of formal methods, formal specifications in
particular, see [1]. It follows that the processes of construction, comprehension and modification of
specifications (a necessary precursor to constructing, comprehending and modifying the software
which is developed from, or compared with them) are vital to the success of this paradigm.

Much of the success of specification languages is attributable to their freedom from
efficiency concerns. Specifications nevertheless impose a number of expectations, for example that
they be complete, consistent and unambiguous. In contrast, the expressions of requirements will
typically be fragmentary, contradictory, incomplete, inconsistent and ambiguous. Furthermore,
their expression may employ widely varying levels of abstraction (e.g., concrete examples,
scenarios, general properties) styles (e.g., textual, graphical, formulae, domain-specific notations)
and viewpoints (e.g., system-wide properties, single user viewpoints, snapshots of the entire state at
one moment in time, historical traces of ongoing activity).

We term these properties “requirement freedoms”, to emphasize their importance for
facilitating the acquisition, comprehension and validation of requirements. They are not necessarily
failings or errors of the producer of those requirements; in fact, it is often advantageous to make use
of these freedoms. Because they are the antithesis of desired properties of formal specifications,

* This author has been supported in part by Defense Advanced Research Projects Agency grant No. NCC-2-520, and in
part by Rome Air Development Center contract No. F30602-85-C-0221 and F30602-89-C-OI03. Views and
conclusions contained in this document are those of the author and should not be interpreted as representing the official
opinion or policy of DARPA, RADC, NSF, the U.S. Government, or any other person or agency connected with him.
** This author is currently at the Computer Science Department at the University of Oregon, and has been supported in
part by NSF grant CCR-8804085.

however, the task of developing a formal specification from such requirements (and ultimately a
program, whether or not this is by route of a specification) may be complex and lengthy.

We feel that there is considerable scope for theories, techniques and tools to assist in
bridging this gap between requirements and specifications, and to make use of requirements before
they have been completely turned into specifications. Such tools must not only be tolerant of
requirement freedoms, but must actively assist in the removal of these freedoms in order to produce
specifications.

2 Requirement freedoms
We list some properties that requirements may, indeed typically do, exhibit, yet are

generally not acceptable for formal specifications.
Incompleteness Requirements can provide partial descriptions of tasks. Particularly for large and

complex tasks, it is important to be able to provide requirements incrementally, so that at any
intermediate point there they may be incomplete. It is also useful for several people to be
separately preparing or extending sets of requirements, which later may be combined into a
single whole; for maximum advantage, each of those people should not be constrained to be
working with a complete set of requirements.

Inconsistency Requirements can be mutually contradictory. This is particularly useful for the
statement of an idealized requirement, which we may recognize as being unrealizable, but
which we nevertheless wish to express. This is also useful for dealing with contradictory
viewpoints, in order to describe them as a precursor to negotiation. Finally, multiple sources of
requirements need not be tightly coupled so as to constrain them to generating only completely
consistent sets of requirements.

Redundancy Requirements need not avoid stating the same thing multiple times. Indeed, it may be
advantageous to be able to state the same thing from multiple points of view, e.g., the cash
register's point of a transaction view as compared with the customer's point of view of a
transaction. Both viewpoints may overlap, stating the same thing in different ways.
Furthermore, redundancy permits cross-checking, a form of validation of the accuracy of the
emerging specification.

Ambiguity Requirements may be ambiguous. In particular, holding to an attitude of “all or
nothing” is often counter-productive during the requirements process. This can be addressed in
several ways. A client should be allowed to state requirements in an ideal fashion, but at the
same time list acceptable alternatives. If it is difficult to know alternatives ahead of time, a
client should be allowed to state flexible requirements (e.g., try hard to meet this goal) or
preferences of one requirement over another (e.g., always choose safety over cost if both can't
be met).

Non-uniformity of abstraction Requirements may express knowledge anywhere within a broad
spectrum of generality. This range goes from very general-purpose domain independent,
through domain-specific, task-specific, to concrete examples.

Heterogeneous forms of expression Statements of requirements should be free to use what-ever
form of expression is most natural to the aspect of the task being described. This might be
textual, formulae, graphical, a domain-specific notation, etc. Furthermore, differ-ent aspects of
the same task should be able to utilize different forms of expression. This is convenient for both
human understanding (presentation in those terms that individual is most comfortable with),
and reasoning (expression that suppress details irrelevant to the particular form of reasoning).

We term these requirement freedoms, based on their utility at the time of stating and
rea-soning about requirements, but their undesirability as properties of specifications (or indeed of
implementations derived from such specifications). This is analogous with the notions of
specifi-cation freedoms as being properties of specifications (e.g., the freedom to state what the
result of some computation must be without being required to state how to do that computation)
that are conducive toward clear, concise and comprehensible specifications, but which must be
removed to achieve efficient implementations of those specifications [2].

3 Processes on requirements and specifications
We now turn our attention to the processes that operate on requirements and specifications,

and then consider how these processes interact with the requirement freedoms we have identified.

3.1 Acquisition and Construction
Requirements knowledge may be gathered from a number of sources. Clients provide sets

of requirements, a body of domain knowledge may already be available, and case histories may
have been kept. The appropriate pieces of knowledge must be acquired and combined, and
irrelevant knowledge discarded.

3.2 Explanation and Analysis
To be comprehensible, descriptions of requirements and specifications must take a number

of forms, and be suitably structured. The viewer's familiarity with various notations, and the
suitability of notations to portraying the particular information, will dictate the choice of
presentation. Examples of structuring include outlines, examples/cases, summaries (including
qualitative models), indexes, scenarios, and several points of view.

3.3 Modification
Requirements will frequently need changing during specification construction as the various

re-quirement freedoms are removed. For instance, inconsistencies among requirements will lead to
their revision. Attempts to specify and implement ideal requirements may show them to be
unre-alizable or just too costly, thus leading to their weakening. Modifications to requirements will
also occur in response to external changes (e.g., an extension of the behavior desired of the system
being constructed, a change to the environment within which that system resides, the desire to build
a similar but not identical system). Modification also permits a form of “near-miss” description, in
which something close to the desired requirement is easily described (perhaps by merely selecting
it from a number of representative examples), and then tailored to form the desired requirement.
This tailoring is a form of modification.

4 Requirement freedoms and processes
We do not want to wait until we have formed a specification before we can begin to apply

our methods and tools. Thus these methods and tools must be tolerant of requirements freedoms.
Lack of such tolerance would force the user to have manipulated the requirements ahead of time as
a prerequisite to expression them. This capacity for tolerance necessitates careful design of tools so
that they continue to function reasonably well in the face of these freedoms, both in terms of
preventing nonsensical effects, and in terms of not overly disrupting the process with numerous
queries or warnings to the user.

Furthermore, we want to use tools to help bridge the gap between requirements and
specifications. We examine each of our requirement freedoms to see what support is needed to deal
with their effect on these specification processes:

Incompleteness During construction, incompleteness may direct the acquisition of further
re-quirements information, or modification of already acquired requirements. The information that
is imparted in an incomplete set of requirements must be retained and manipulated, even if it
remains disjointed and cannot be coalesced into a single whole. Analysis and ex-planation tools
must handle incompleteness gracefully. They should do reasoning about, and presentation of, the
information that is available, while indicating the limits. Modification of requirements may
introduce further incompleteness, or be applied to remove it. Tools should make plausible guesses
when appropriate, and be able to gracefully retract those guesses when they are determined to be
incorrect.

Inconsistency identifies conflicts in the requirements that require resolution. This is a
frequent activity in requirements analysis, where trade-offs must be made between conflicting
ideals. Negotiation techniques will be brought to bear here. Analysis must appropriately limit the
propagation of inconsistency so that an inconsistency amongst the requirements does not render all
other analysis results worthless!

Redundancy permits the cross-checking of information. A single formalization of the
information will be selected for inclusion in the specification, but linked back to the multiple
requirements that led to it. Analysis and explanation techniques can make good use of redundancy
when presenting information to the user, since alternative presentations of the same information
may emphasize different aspects that would otherwise be easily overlooked by the user. In-deed,
analysis is the activity of presenting redundant information, although presumably in-formation that
would be hard to immediately deduce from a given form of the specification (e.g., proving some
property holds of a specification is 'merely' a deduction from the existing specification, yet
arbitrarily complex reasoning may be required to make that deduction).

Ambiguity indicates the need for choice among alternatives. Our tools must be able to
navigate in a sea of choices, preferences and trade-offs. It may no longer be possible to say that a
requirement can or cannot be met. Instead, achievement becomes relative to a client's preferences
or to some allowable range of behavior. Further, during construction there should be no pre-
ordained dogma that insists choices be resolved when they arise. It is useful to retain a record of
alternatives, and justifications for choices when they are made, so that the resulting system can be
justified, and so that future changes can induce a reconsideration of those choices as appropriate.

Non-uniformity of abstraction allows the use of general-purpose information suitably
instan-tiated for the task in hand. Similarly, specific but paradigmatic behaviors may be stated as
requirements, the intent being to construct a specification that exhibits those, and similar,
behaviors; thus generalization from examples occurs during construction. Analysis and
ex-planation likewise make use of this flexibility, presenting information in general terms (e.g., a
traffic light controller is an instance of a scheduling system), very specific cases that the user can
relate to (e.g., car-1 enters the intersection while its traffic light is green), and even in qualitative
terms (e.g., an increase in traffic will cause a decrease in a throughput require-ment). Modification
comes in to play not only to move between levels of abstraction in the traditional sense of
refinement/generalization but also as a means to tailor, customize and incrementally construct
something 'similar' without being restricted to pure refinement or abstraction.

Heterogeneous forms of expression must be acceptable as input forms of requirements, and
require translation into some common (internal) representation. Support for user-defined languages

and notations permit task-and domain-specific extension of the notations available. The external,
user-provided expressions should be used where possible as the means to present analysis
information, so that translation must go both ways. Modifications expressed in terms of any of the
representations must be appropriately conducted in the internal representation.

The concept of requirement freedoms, and the language and tools they engender, are being
studied as part of the Aries project at ISI and Lockheed Sanders, and the Kate project at Oregon.
Further information may be obtained by contacting the authors: feather@isi.edu,
fickas@cs.uoregon.edu.

References
[1] A. Hall. Seven myths of formal methods. IEEE Software, 7(5):11-19, September 1990.
[2] P.E. London and M.S. Feather. Implementing specification freedoms. In C. Rich and R.
Waters., editors, Readings in Artificial Intelligence and Software Engineering, pages 285-305.
Morgan Kaufmann, 1986. Originally published in Science of Computer Programming, 1982 No.2,
pp 91-131.

	1 Formal specifications and requirements
	2 Requirement freedoms
	3 Processes on requirements and specifications
	3.1 Acquisition and Construction
	3.2 Explanation and Analysis
	3.3 Modification

	4 Requirement freedoms and processes
	References

